调节阀的主要噪音源是:阀部件的机械振动和流体噪音,而流体噪音包括流体动力噪音和空气动力噪音两类。
机械噪音 一、阀门部件的振动是由于阀体内不规则的压力波动和(或)流体冲击可动的或活动零件所引起的。由于机械振动所引起的最通常的噪音源是阀芯相对于导向表面的横向移动。这种类型的振动所产生的噪音,其频率一般小于1500赫兹,而且常常显示出一种金属的响声。对于阀芯和(或)导向表面所遭受到的物理损坏的关注胜过对发生噪音的关注。二、机械振动噪音源是阀门部件在其固有频率下共振。阀门部件的共振振动产生一种单音调的声音,其频率一般为3000~7000赫兹。这种类型的振动产生高能级的应力,最后会导致振动的零部件因疲劳而损坏。对固有频率振动敏感的阀门部件是柱塞式阀芯、圆筒形薄壁窗口型阀芯及柔性部件例如球阀的金属密封环。
流体噪音
一、流体动力噪音 控制液体的调节阀可能是主要的噪音源。可以把流动噪音看作为流体动力噪音,而且可以按照具体的流动类别或当时产生的特点来分类。通常可以把液体流动分为三类: 1、无气蚀的 2、气蚀的 3、闪蒸的 无气蚀的液体流动一般产生很低的环境噪音级。通常认为,产生噪音的机械过程是流体湍流速度波动的函数,通常把湍流波动看作为“雷诺应力”或湍流动量。在调节阀中出现高强度湍流是由于缩流处的面积突然收缩,缩流处下游处的流速迅速减低的结果。 现场经验证实这种试验结果,从无气蚀的液体应用中产生的噪音很小,一般可以不予考虑。气蚀是主要的流体动力噪音源。这种噪音是由于在气蚀过程中形成的汽泡破裂所引起的。在控制液体的调节阀中,无论是当阀门的下游静压大于蒸气压还是当阀门中某点的局部静压小于或等于液体蒸气压都会出现气蚀现象。气蚀作用对于限制气蚀流体的固体表面会产生严重的破坏作用。一般说来,由气蚀所产生的噪音是次要的。 闪蒸是当节流元件前后的差压大于入口的绝对静压力和节流元件前蒸气压力之间的差压即△P>P1—Pv时,在液体流动中出现的一种现象。控制闪蒸流体的阀门所产生的噪音是两相流体的减速和膨胀的结果。二、空气动力噪音 空气动力噪音是调节阀的主要噪音源。空气动力噪音是流动气流所产生的噪音,即在没有振动边界或其它外部能源的流体的相互作用下产生的噪音。空气动力噪音是雷诺应力或剪切力的一种结果,雷诺应力或剪切力是由于减速、膨胀或冲击的结果在流动的流体中产生的。
了解更多产品详情请登录http://www.zjcz-v.com